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ABSTRACT

The exceptional Lie proup I, Is a candidate Jocal symmetry for a

6
Yang~MI11s theory that unifies celectromagnetic, weak, and strong interactions,
Several waves ~f incorporating the fermfon spectrum are discussed, Including

an amusing cexample where some of the known spiu 1/2 fermlons are composite
states of clementarv fermions and some scalar particles In the theory.

The symmetry propertics ad the representations of Eb are reviewed, the
svmmetry breaklng classificed, and the dynamical breaking of the weak
Interactlon paupe group Is discussed, all In some detail using Dyvnkin's

representat fon theory,
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1. INTRODUCTION

It does not look likely that it should he much fun to explore Lhc
features of a Yanp-Mil11s theory based on a group of rank 6 with 78 generators.
Just writing down the commutation rclations of the exceptional Lic algebra
E6 in a useful basis looks llke a mess, and working with represcntat!lons
of dimeneion 27, 78, 351, or higher weuld scem to be, at best, tedious.
The only way to have any fun at all In cxploring the conscauences of such
a blg group 1s to have an caslly applled technology. In fact, Dvnkin's
representation thonry] is qulte adequate for obtalning many of the symmetry
results of the theory. The purposce of this talk Is twofold: (1) to
"review" how these technlques can be uscd to explore certaln consequences of
Yang=-M111s theories: and (2) to apply these techniques to an i, model In
which the scalars In an adjoint 78 form composite bound states with the
clementary fermfons In a 27 to plve a total of three quark=lepton famllles.
Much of the rescarch reported here was done In collaboration with Gordon
Shnw.2 T have wrltten up these notes In an order reversed from the o 1F
at orbls Sclentiae and the presentatlon of Ref. 2, because T would ke to
use this opportunity to emphasize the nsefulness of DynkiIn's representat fon
theory for exploring mifled models,  Instead of startine with the phvstes
of the composite fermlon model, which the reader will tiod In See. 3, 1 will
review some of the mathematfes of Hﬁ firat, bepfoning with a rapld review of
Dynkin'y representation theory. We can then use the Lacpuape developed In

See. 2 with Impunity for deseribing the composite formlon madel.,



2. SYMMETRY PROPERTIES OF E6 .

Our object in this Sec. 1is to reviéﬁ the quantum number structure of
the representations of E6 in a fashion t:at is very convenlent for maay
other applications. This means that e st be able to identify the physical
significance and compute the eigenvaiues of the 6 diagonalizable gencrators
of “6‘ when actling on vectors in the representation, and then learn what
the 72 ladder operato® do to these quantum numbérs. The Dynkin formalism
w-1'ts for any simple algebra. It can be viewed as a Tancy way for keeping
tra v of the quantiem numbers, &na as such, it I8 merely a mathematical
bookkeening trick. However, 1t does greatly slmplify doing the physlcs too,
and 1 : pe the reader will find It to be fun,
The rank of an alpebra G {8 the number of Independent diaponallzable
generators In G: these 2 gencrators form the Cartan subalgebra of G,
The remalning gencrators can be wrltten as ladder operators, whilch, when
acting on a Hilhert space vector In a repiesentatfon, chanpe  the set of
J{ elpenvalues by amount X, The Af clpenvalues correspond to a point
fn an Jlemunﬂlunul Fuclldean space, which I8 called the welght of the
reproesentat Jon veetor A . The root & I8 also a vector with [ components
In welght Hpace, and It reprosentt o permlssaible shift from one welpht to
another.  IT A and A+0( arc both welghts of a umitary hrroducible
representation (Irrep) of G, then the ladder operator  Eg acting on IAD
{s proportfonal to |A+ H> . The vorrespondance hetween welght space and
representat lon upace s a key podnt in represeatat lon lhvnl'_\'.l"'l
A convenlent hasis for the welght space {8 formed by the .4? “imple
roota of the algebra:  thede speclally chesen roots have the relat fve

I
lengthn and anples indlieated by the Dynkin dlagram. The almple root bhanin

I8 not an orthonormal basin for welght space, but otherwine, {t I extromely



useful. FEach representation vector is labeled by a weight. In the "Dynkin

basis" the components of a weight A are ,4! integers ays defincd by the

scalar nroducts,

2(A, @)
aj - —(m_) ,l=],2,...,/, (])

where at is the i-th simple root. The p. f that ay must be an Integer is
a generalization of the proof that the magnetlc quantum number of an SU2

vector must be integer or half integer. (For SUZ' a, = 2m.) The computatlon
of an irrep
of the set of Heights‘written In the Dynkin basis (aa ...nt) s straightforward.

172
There cxista cne weight, the hlghest weipht, that always labels a unique
Hilbert space vector in the Irrep.  Each sct of'é?nunnogntlvo Intepers
unicuely gives the hipghest weight of an irrep of 6, and these sels exhaust
the entire set of finite dimenslonal irreps.  Starting from the highest
welght, the remaining weiphts are computed by subtracting of f simple roots:
iIf at any level (the level is the number of simple roots that have been

subtracted from the hipghest welpht) the a, coeffleient I8 posttive, then

the i~th simple root can be subtracted off "y morce times, and the resuliing
welght I8 a wefght In the irrep.  The maximum number of simple roots that

can boe subtracted of f the hiphest welght s the scalar product of the hilpghest
welpht and the level vector;  tae level vector for B Is ﬁ e [16,70,42,30,16,22].
(The computation of scalar products will be consldered shortly,) Morcover,

the welght system of the representat fon muit be apindle=shaped;  the aumber

of welphty at lovel k 1s oqual to the number of welphts at 1evel PA -k

(A the highesat welght), and the number of welpghtn at level k+l s g o

that at level k, for k leas thin ﬁ’/\/Z. A plven welpht mav be obtalned by
soveral routes.  The degeneracy of a welght can he computed (with a LIt more

difficulty) from the Freudenthal rocurslon relatlon, but for the tow lvine

Irrops studfod here, the degeneracy o eanlly guenned.  (The degeneraey s the



number of Hilbert space vectors in an irrep with the same weight; additional
labels are needed to distinguish degenerate weights.)
We will need to compute many scalar products in weight space. Because

the simple root basis is not orthonormal, the scalar product of weiphts with

and a'

components a, 1

involves a metric tensor, which 1s closely related
to the 1nverse of the Cartan matrix A_l, and 1is A-l for the algebras where the

1
simple roots all have the same lengths. Thus, the scalar product of A and A 1s

L
(A: A’) - ﬂi(A-])” H'J = K'A - i 'aui a'1 ’
¢J=| ] i il (2)
~ -
a, = nJ(A )ji .

We wlll often gilve A in the "pynkin basis" (a v.edy) , and we will call ft
~ ~ pg;ting the components in squarc brackets.

/\ when multiplied by the metric, A - [al ...3',_]. The inverse of the

Cartan matrix (A Itsc1f can be read off the Dynkin diagram) for Eg 1s

/t. 5 6 4 2 3\
5 10 12 £ 4 1)
6 12 18 12 6 9
A_l = _1_ (3)
3 4 8 12 10 5 6
2 4 6 5 4 3
3 6 0 6 3 ¢}

Let u: apply these results to some Hb frreps.

"ighest welght

(1000009) Is complex and 27 dimensionnl.

The representation with

With dvnkin's

conventiong, the firat simpic root s ( 2-1 0.0 0 ")), so the first level welght Is

then (=1 1 00 00); the srxcond lTovel

( 00-1

COOO0 1 0=1); and 80 on to the 16=-th lovel, ( 00 0 0-1 0).

is { 0-1

1 0 1): the fourth level has two welghts, ¢ 0 ¢ 0-1 1

1000; the third level s
1) and

The Ez haa

hignest welght (0 00 01 0), and tlie adjoint 78 has highest welght

COVo0o0l).

We shall show shortly that

In the usual embedding of color and flavor in

F, , the clectrice charge operator, which {s In the Cartan subalgebra, is

6



measured along the axis,

" - 221201 0], (4)

where the normalization of 6em is chosen so thar the electric charge of

any weight (or state) is given by the scialar product,

oy = T-A L (5)

Thus, the ( 1 0 0 0 0 0) has electric charge 2/3, (-1 1 0 0 0 0) has charge
-1/3, (00-11 0 1) has charge -2/3, and so on. Wec will need to discuss
the conventione concerning the embedding of electromagnetism in E6.

Before we can identify the physical relcvance of the roots and axus
in weight space, we must find out how color and flavor are embedded 1in Hﬁ.
This embedding can be donc in a coordinate independent faﬂhion.4’5 There Is
only one embedding of QCD and QED that scems to have o chance of being
relevant. This embedding is identifivd by the requirement that the 27 has 9
color singlets, 3 quarks and 3 antiquarks, where two of the quarks have clectric
charge ~=1/3 and the other quark has charge 2/3.  (The embeddings with onc
singlet, one octet, J quarks, and 3 antiquarks appear irrelevant, as do more
exotic charge asslgnments.; For many purposes this coordinate Independent
statement of the embedding Is sufficient. NHowever, for practleal calculations
of symmetry breaklng and masd matrices, it 18 often helplful to have a
coordinatizatlion o1 the welght space. We follow a cortain wet of convent fons
herc; other conventions are related by a Weyl reflectlon,

The possible subgroun chalns that lead to these color and charge

araignments have been clasalfled hy l)ynkln.l The most useful for physles are

. y - ' w aw ¢
l"() > | b()ln > ) 3”5 D Sll2 )(E.ll3 . (0)

1] ) L) “ L) v L) . (l
hﬁ D hnlO = hU2 X hUz X su, (hUh > hUJ ), (7)

Hﬁ = su, X HU:

, ) X su,“'. (8)



where the first SU3 in (B) contains SUzw, the weak isospin. (We have

ignored the U,'s, but this omission will be filled in later.) Our embedding

1

conventions are to follow Ref. 6, where the highest weights of an irrep are
projected onto highest weights of the irreps to which it branches, for the
chain in (6). Then for (7) and (8), we require that the same physical

directions in E_, welght spare as derived from (6) are maintained for the

6

other embecdings. (For example, the same roots correspond to SU C, etc.)

3

The proujection matrices for the subgroup chain in (6) are6

01 1100
0 00 0 0 1

P( Fg D S0, ) = 001 0 0 0 (9)
000110
1 1 00 00
11 0 0 o\
00 1 0 1

P( somj sus) - 600 1 0 (10)
lo 1 1 0 o
01 1 0

i sU. X SU =

P S, D EU, X SU,) 1 1 0 0 ()

0 o 1

The projection matrIx 18 not dquare I{f there Is a loss of rank or a "l factor
In polng to the subgroup.  The matrlx clemeate are nonnegative Integers
becruse of the eonventlons followe d.

We identify the SLZ and SU, of (11) as the weak and color groups, and usce

)
this subzroup chain to fdentIfy the phyaical  aignifleance of the roots of HG.

Thin Identifleatlon 18 worked out In Table 1. Conalder the oxample of the

Hﬁ root ( 1=1 1=1 1 0), which I8 projected onto (=1 01 0 0) hy (9). That in



a root in the 45 of SO This SO.,. weight is then ;rojected by (10) to

10° 10

the SU5 weight (-1 1 0 1), which is a root in the adjoint 24. Finally (11)
projects (-1 1 0 1) to ( 1)( 0 1) of SU2 X SU3, which identifies the

( 1-1 1-1 1 0) root of E6 as a color triplet with I Y = 1/2; it is the

3
charge 4/3,SU5 antilepto~diquark that mediates proton decay. It is a simple
computation to construct the rest of Table 1 for the 78, and also to work

out Table 2 for the 27 of E,. The columns labeled SUS(SOIO) glves the 50, irrep

into which the E6 weight branches, and then tells which SU. irrep that che

5
5010 welght branches into.7 The gimple roots are recovered at level 10 or minus
level %g'computing the nrojection matrices for the subgroup chains (7) and (8),
we requirc that the E6 roots have the same interprcetation as the chain given
by (9), (10), and (11). That is our convention. Thus we must require that

the projection matrix for (8) carries the ( 1-1 1-1 1 0) root to

(10)(210)(01) of SU3 X SU, X SUac. since this root has I.* = 1/2,

3 3
Qum = 4/3, and i8 an antiquark. Since the 78 branches to (g,l,l) + (l.ﬁ.l) +
1,1,8) + (2,3,5) + (5.5:}), we see that the identificatlion 1s unique. For

the subgroup chain In (7), we use (9) and find the projection matrices,

P( so]OD S”z X SU, X sua) = |1 1 1 0 1 (12)

. 1 0 0
P( .sul. D su3 ) " 0 1 0 (13)

Of course, (12) and (13) are useful for studyling 80]0 theorles. Finally, we

find for the projectlon matrix of (8),



1 1 1 1 1 o
0 -1 -1 -1 -1 0
o 0 1 o0 o0 O

P( E, D SU, X 5U5 X su3° ) = o 0 -1 -1 0 0
1 2 2 1 o 1 (14)
o o0 1 1 1 1

I
For SU5 theories, this machinery is stronger than is usually needed, although
it i1s very easy to use and actually simplifies many ccmputations. (As an
exercise, consider the SUg fermion mass matrix including the 45 and 50
terms: remember to use the Kronecker products in doing this.)

The eigenvalues of the generators in the Cartan subalgebra can be
const: .ed and computed in a straightforward fashion by computing the axes
and normalization as done for the electrfc charge in (4). Since the values
of these quantum numbers are already kiown from coordinate independent
methods,5 the computation 1s well defined. 1In Table 3 we have llsted a
complete set of penerators for the flavor interactions. Two of the Cartan
subalgebra members are in SU3C, and the other 4 include: the U, in E6 >

1

t . —~ :
1 ¢ the U] In SO]U ] SL5 X ll. which we call

U]r; and the weak isospln and hypercharge axes. Thesc latter axes arc

SOJ X U]’ which we call U

0

w
3

The quantum number structure of the E6 gencrators and irreps is

normalized in the usual wav, so O = 1.¥ + YV/..

summarized in Tables 1, 2, and 3. 1n Table 1, half of the nonzero roots of E6

are listed: the ncgatives of those listed and the zero roots are not listed.

The 27 is complex, so the negative of a weight in the 27 I8 not in the 273 It

1s In the zz. Tabledcontains projectlion axes and the welights of Bseveral
important roots. I hope that the reader will enjoy checking these tables and
finding just how simple it iW to identify the phyeical content of the H6

generators and states. These techniques can be used for even bigger groups,
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such as SOlB or 5022. and for even larger irreps, sucn as the 351 or 1728
of E6 8 without using a computer, although a program does exist.6
We now turn to an important application of the above formalism, that

of investigating the symmetry breaking of E6' Instead of trying to set up
a Higgs potential and doing a messy minimization problem, we apply several
physical constraints that any symmetry breaking me. hanism must satisfy if
the satandard :iodel is to be recovered in its usual form.

If a field or "effectlve field" has a nonzero vacuum expectation vnlﬁu,
then the weight of that field determines much about the symmetry breaking.

E6 models have a set of lepto-diquark bosons that medizte proton decay in

second order, so these bosons must have superlarge (;21014 GeV) masses
fromla big symmetry breaking, just as in the SUS modc-].9 The direction of thc
big breakinp in the 6-dimensional weipht space, written in the Dynkin basis (1),
is called B, Similarly, the little breaking, which glve:r .sses to the weak
bosons and may also contribute to other %“wosons in the theory, 1s called 1.
Of course there may be some intermedinte mass scales, but generalizations to
ithat case will be obvlous.

The welght-space direction of B must be perpendicular to the SUBC roots,
or elsc the culor-changing gluons will acquire masscs, and it must be
peipendicular to I+w. the roct of the weak isospin railsing operator, so that
the chargad, weak boson does not gat a superlarge mass. In Table 1 we find
that the quC roots 1ie in the plane formed by ( C 0 0 0 0 1) and ( 0 1 0 0-1 0),
which implies that £11 symmetry breaking directions must have the

parameterization,‘y w [~-cdabd 0], where % 1a defined in (7). The I+w

weight Is (1 0 0 0 1~1), so the big breaking has the form,
Lo d
B = [-ccabcO0] . (15)

P d
The column labeled B*'® 1in Tahle 1 gives a parameterlzatlon of the vector



boson mass elgenvalues for each root in terms of B, up to an isoscalar factor
that must be included for other than adjoiﬂt breaking.
In order to show that the boson mass eigenvalues are proportional to

the weight-space scalar products of the roots and the symmetry breaking

direction, we examine a simple example. The boson mass matrix in the trec

approximation to the Higgs model has the form,
- . ”

Mg > 2 Bt NN Xel £ 2S00 Ka L X P02 ' aw

A0 N

where the vacuum expectation value of the acalar fields ﬁv(r, A) has

welpht A and belongs to representation r, and <I,AIXAIIDA'> is a

matrix element of the generator X... We use this rotation in order to

emphasize that 9$V(r,,a) is a tensor operator. Thus, we can use the cormutation

relations for tensor opcrators to rewrlte (16) as

M%(,s ""j"?'- EX«,.¢|/(!M)][X; ;¢v"'»"))—7- (17)

The advantage of writing the mass matrix In this basis-independent notation
is that 1t 1s often quite simple to selcect a basls of the Lle algebra so that
2
M™ Is diagonal.
Suppose that r is the ad)olnt representation of 6 and that there Is
sufficient gauge frecdom to retate ’4;[5A)lntn the Cartan subalgebra of G.

This means that the vacuum expected value can be expanded as

¢\,(_r_.A) - é T n (18)

{1

The component.s ﬂj define the aymmetry breiaking dirvection In welpght space.

The computation of the mass matrlix requires a knowledge of the commutatars,
[ Xy HL]' This commutator is zero If X 1s In the Cartan subalgebra, so
we can conclude Lmmediately that 4! vector bosons are massless.  The mass

matrix Is diagonal {f the remaining generators Eg are writien (n the Cartan-
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HWeyl bawls, where the ralsine and lowerlay operaters satisfy clecnvnlue

cquatlons of the Lype,
[0 Fol = heFg (19)

whore a& Is the I=-th component of the root veetor & Upon substitut Ing
(19) Into (17) , we obtaln .
L O o
Moy r - Tr fracZ X (8% Xp] = §"8ap @ED e
where the last step Implles a normal Izat lon conventlon.  Hlms, the mass
celpenvalue  of the vector botson asuociated with welpht & 1s nrorortion. t-.
(v,¢) » T,

Woeo return to the more ceneral discussion. The next quest fen T chet ™o
B is a direcction detined by a vacomm cavectatfon value with zero wel=ht, (v
the direction s deflned by nonzero welshts., We shov toas o met Ly
contribution from zero welphts, I B were due oy to g pecsmere s o Yo i o
the welght must be perpendlealar to the electrle ehoree axteg D o0 000 |-
not broken. The electrle charge axls £4) I8 perpendienlar to ® 50 -1
which, In tura, amnlles that the SF5 lepto=dimarks re-co lee 3001 28 From o,
The {mvlicatlon for the proton decay rate s obvlous, For s b v
cm assume that the ble breaking has zero welehts Then none of che bosons
nnnociated with the Cartan subaleebra pet o severiree maaso am' ve see e
Table 1 that, at most, B can bredk "“ to !-!l'z ¥ I'| X I'| X |=| b ;:l'."..

The 1ittle breaking must have a component with \Alwl - 1/2 1t ean
also have 2 component with |Alw‘ = N, which has the same form as B In (1IN
IfT 1t has zero welght anag e condatralned by n = b + ¢ If It had nonsern welght,
For now we conslder Ilu'ljllwl = 1/2 tern enly, which necossarily han pongern

welpht, 8o each JAIY | = 1/2 welpht must have the forn,

T = [-d, dEl, d+o, 0, d 1, 0] ')
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Fven without an explicitr model of symmctry breaking, there are a few
more comments that may prove interesting.

(1) Much of the discussion about B is not actually restricted to 78
breaking, c¢xcept that the hreaking representatfon must have triality zero.

oy E
The only lrrepsnwigh zero weights are 78, 650, 2430, 2925, or larger.

(2) Suppose that B 18 due to an adjoInt representation of Higes scalars

alone. The only independent Cagimer invariants of E, are of order 2, 5, 6,

6
8, 9, and 12: thus the Higegs potential can depend on the length of the 78
onlv, and in the tree approximation there are no constralnts on a, b, and ¢
in (1%). The cne=loop corrections to the effective potential select a = 0
and b = =¢, 50 un entire SOIO X U] Is left unhrukun.lo Thore {8 no reason
to belleve that, when bound states and other scalars are Included, thede
radiative correctlons would dominate the determinatlion of Be In fact, It Is
concelvab,e o0 Doar singled oue by the acak breaking.

(1) 1f the adjelnt breaking I8 along the onlv rawt with IAlw' = 0, which
Is C0=1 1 1-1-1), then an entire S"b In left unbroken.

(4) 17 the 1t le breaking I8 In the 27, then there are three candldate
,A|"| = 1/2 welghta,  Each of these breaks St, X G X B X U to 00

(h) As In an Hﬂgﬂalth Hpgps sealars trimsforming an 3 + 3 + 8, It often
hanpens that scalars in different {rreps pet vacuum values and, For o ~ange of
parameters, tholr directione are pe, pendicular in welght space.  The weak breaking

in the satandard Sl model trandrorms o8 5 + 3. or the 10 of the 50, theory,

0
vhich suppestn that the weak breaking L han welpghts (0 1=1 01 0) and

(-1 01-1 0 0) of the 27. This leads to n nlee breaking rattern. L s

perpendicular to B if a » 2¢ amd b = 3¢, ko that B breaks Hb to suz X s, X

2
XU X suj". and 1. hreaks this on down to ul“” X suj“ . See Table 1,



14

3. AN E6 MODEL WITH COMPOSITF MUOMN Al TAU FAMILIES

There 18 a widespread bellet that the standard model of electromagnetic,
weak, and strong interactions correctly describes low encerpy data. The
phenomenological succens of the SUZ X ”l X su3° mode ]l with left-handed doublet
and right-handed silnglet fermlons s offdset by the necensity of detemining o
large number of paramcters and assigning a large numher of elementary feralons
from the analysin of a huge amount of experimental data, Thisg diffleulty Is
duc partly to the semislmple group structure of the theory, kut ceven more
significantly for our considerations here, It Is aldo due to the large nunber
of known quarks and leptons,

The problems associated with the semlsimple vroup structure may he
overcome by enbedding the satandard model Into a undfylngy group, which we
denote by G'.  The smallest eandidate for G' is HU“.Q In this moael the
Jarge number of “nown quarks and leptons are asslgned to a hifghly reduclble
representatfon, and the fermlons arranged In this way st appears dlsorderly.
There have been several suppest lons for tidving up the sltuatlion: (1) perhaps
there 15 a local or other kind of family svmmetry that I8 embedilod together
with SU5 and possibly other factorn Into a yoet larger wnifying alpebrag
(2) peraapu, tollowing the hints of suporgravity, the fermlons belong to a
1 vwge frrep of o relatively small group* 1) perhaps none of the known quarkn
and leptons are elementary: or (4) perhaps some of the known fermlons are
clementary, (for example, one famlly), and the rest are composite.

We explore the lant alternative Iwru.2 The proposal s not very radleal
and at first glance, It would not seem poasible for that kind of model to
pive a satinfyinpg account of the proliferation of clomentary formfonn.
Noeverthelessa, there I8 an attractive example where the electron famlly (or
muon family) Is olementary and the muon (or electron familv) and the tan

family are componften.  The hinding foree, color and flavor are it ied Into
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the exceptional group Eﬁa and the clementary fermions are assigned tc the 27,
We now "derive" this E6 model, because such n discussion mhowa that the
model is qufte unique. Suppose that G' is a simple Lle group that unifies color

an. flavor In the usual wny.s and that there 18 a Ul factor Ult. not In G',
With a current that Is coupled to a vector hoson that provides the binding
fnrce.11 We assume that 6' X U]t is a maximal subgroun of n saimple gproup G,
g0 the elementary particle flelds are assigned to Irreps of G, The branching

rules derived from the embedding,

8 D6’y vlt . (22)

provide ‘up to an overall scale) the binding charpe elgenvalue of each
Irrep - GV,

The second assumpt lon I8 Lthe existence o a short=ranpge attract ive force
heiween two parileloes wilh Ql charves of opposite salpgn.  The composlte fermions
are s=wave aound states of the elementary fermions and certaln sealar
particles In the theory., There are vector bosons with nonzero Ql. but we
asuume that they pet super heavy misises, and 8o are frretevint For this
Hucussion,  An advimtaee of the fermion=ncalar binding pleture 18 the casc

st ructure
with which the Termion hvllvllyAlu miintained. In addition to the composite
fermlons, there may also be composlte svealars that are fermlon=ant [ fermlon
bowd sLntenw,

The next asnumpt fonn are phonometologleally motivated.  For parlty to be
vonsorved In the olectromagnet e and strong Interactlons, che fermlion annignmentn
Including the componits onen, must be vectorl fke under co'or and electrie
charge, With regard to the weak Interact fonn, ve ansume that parity in
violatod heeause the theory Ta Flavor chiral, so the left=handed fermfonn are
fs a complex representat fon,  In addition, we annume that there (v one tamily

of elementary fermlonn,
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We select the G' that 1s as small as possible. G' must have complex
irreps, 8o the smalleat candidatec for G' is SUS' with the elementary fermions

transforming as 3 + 10. Now, SU5 X Ult is a maximal subgroup of SU_, S

6' “P10°
and SOlo. There are no irreps of dimension less than 5000 of SU6 or SP]O
that contain a_E-* 10 of SUD. Solo Is unacceptable because parity must be
conserved in QED and QCD. The E and 10 have different Qt values, so the "
and e+ will bind to different scalars; similarly for d andd d.

We can avoid that difficulty by requiring that a left-handed fermion
always be assigned to the same {rrep of G' as its left-handed antlparczicle
image. This firat happens for 5010 X U1l. which 18 a maximal subgroup of
8012 and E6. We discard 80]2 becnuse It gives a vectorllke theory for all
interactions, nven for the composite fermions, This Teaves us with Hﬁ and
the embedding,

b, D so xut : (2)

The fundamental ficlds Include the 7R vector bosons, the 27 of clementary
fermiong, and n 78 of scalars ¢chat can form bound states.  The 78 swealars
alone have no Yubawa couplings with the 27 of fermlons, so there Is at leas
an Hb X Hb chiral Invarltance that may be broken dynamically by acalar bound
states. This {8 a rather alee scenarfo, because, as we shall discuns, here
18 no goauge hlerarchy prnhlvm.l)

The cigenvalnen of Q' wore computed In the tant wectfone We Hint here

the branching rela lons with the Q' valuen In parenthenin:

27 = 1(A) + 10(=2) + 16()) (24)
I8 = 1(0) + 45(0) + 16¢=3) + 16(1) )

The normalizat fon conventlon s met fn Table 7.
We now une (24) and (29%) to conatruct the bound atate spectrum. We annume

that aefeher the 27 nor 78 get superlarpge mannen, but are heavy enough and tie
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binding stroug enough that the composites appear pointlike to all probes made
so far, such as in lepton pair production or g=-2 experiments. The composite
fermions are due to the binding of the 16 and iE in the 78 to the elementary
fermiona with Qt of opposite sign. The spectrum of left-handed fermions,

classified by SOlo irreps 1is

f,o= (1+410+16) + (16) + (16 + 144) . (26)

L — — ' —

The flrst set In (26) are the clementary fermicna in the 27; the second set
arldes from the binding of the 50]0 singlet fermion to the 16 of scalars,
and 14 the most tightly bound; the third set arises from the binding of the
10 of fermions to the IE of scalars; and a fourth set that is omitted from
(26) would be duc to the binding of 16 and 16, which would glve a set with
10 + 120 + 126, This last sct s least strongly bound, if bound at all, and
we shall negleet It for the “epainder of the talke A similar dlscussion of
the scasar bowund dtates In 27 X 27 I8 also poralble, and these might be used
to break the weak Interact{on group dvnamically. The composite welphts In
the 2? colnerde with the example at the end of See. 2.

Perhaps the most amusing feature of (20) I8 the avcurance of three
famil{es of 16's The electron and muon families can be assipned to the
firnt two 16'a; without further snalysis 1t 18 not posslble to declde which
Is elementary,  The ¢ family should be efther o the t'ird 10 or In the
14k, which also contalns n & + 10 of SU,. Since the 16 and T84 ave hound
with the same overall binding strenpth, a ealeulation {8 needed to declde
which has the low:nt mana sta,en, What e more salgntifeant In it thin
mode ] pradicets a great proliferatlon of quarks, leptonn, and other fermionn
not too far above the T and b mannen.  Although thin In not a unique

prodictlon of thin bound ntate model, (¢ will be Interent ing to see what will

he dlucovered above preanent PETRA energlen,
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For the composite fermion model to imitate physical reality, the binding
force must be very strong and very short ranged. Thus the vector bosnn
mediating the force must be very heavy (perhaps around 10 TeV) and the coupling
alt(Qz) must bc very large at small Qz. Without adequate field theory
technology to compute large running couplings, it is nuc possible to give
quantitative results about thc massea and the behavior of the binding force.
However, the behavior of smnll couplings is well understood from che
perturbation theoretic reatment of the renormalization group equations; since
we kpow that the values of the standard model gauge couplings are small at
Q2 around 10 GeVz, it 18 neceasary to check whether it is indeed possible
to compute c[t(Qz) for all Qz .

The argument that che gauge couplings do become large Is one of sclf
consistency. If the 78's of vector boscas and of scalars and the 27 of
fermions are the only contributlions to the one loop apprximation tr “he
running coupling cunstant equations, then the theory 1w asymptotically free.
(We Ignorce the scalar self couplings In this consideration.) Thus, If the
strong coupling 18 small at 10 Guvz. then it 18 even gmaller at larger Qz.
and there 18 no reason to belleve that any of the I-:(, couplings get large.
However, If the composite stutes are tightly enough bound that they also
contribute to the one loop approximation over, suy, the ranpe of 100 GeV to
10 TeV, then they can destroy the anymptotic frocdom of QCD and can push
the coupling up Into a region where v @ cannot, at present, compute It.

There are 41 effective flavors  of gquarks fa (206), and In the one=loop
npp}nulmntlun, wee can estimate the value of 62. whore the QUD coupling becomes

large. 1t is

, = Lo .Iq,"d’(,([lﬂ,)v’
\I'Ef" T\ 5.7’91/5[‘ (:‘3_1{55‘_)_)( 33-2M,- 101, - izn,)] \[/'—;""f’ Lo -

L 27)

where "3 {n the gluon contrlbutfon, ny I8 the number of Dirac quarks, n 1w

¢ .
the number of Dirace 6, mMnm In the number of Dirac octetss This rather rapid
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growth makes it possible to speculate that in a region between the weak
boson mass and the unification mass, the gauge couplings may be large and
O(t(Qz) "freezes out" with a large value. We could also speculate that the
couplings do eventually become small and asymptotically free before unification,
(at large Q2 the bound states no longer contribute) so that the proton decay
rate is not too fast and the unification mass is not too close tn the Planck
mass. The dynamical symmetry breaking may cause the desert to bloom.

If this scenario is correct, then we must change attitides toward
some computations in unified models. Problems and advantages seem to be
reversed over the situation with the usual SU5 model. The unification mass,
weak mixing angle, and quark masses are not easily computed, because the
perturbation theory formulas do not hold over the whole extrapolation
range. Thus taerc is no calculation of the proton lifetime, although this
is not a difficulty of principle. The gauge hicrarchy problem takes on a
new character in the composite fermion model. Suppose th~ superstrong
breaking iy due to explicit lilgpsism. 7Tien at the uniflcation scale, the
composfte Acalars that do the weak breaking do not exist. The composite
scalars appear clementary only on the scale of 100 GeV, and then may be
available to do the weak breaking.  Thus, the hicerarchy problem wonld be re-
solved If the weak breaking were due to this dynamical mechan{sam.

Further detalls of enis mode! can be found in Ref., 2.
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Table 1. Noazereo E6 Rocts.

root ievel color
Color SU3 TOoOCH

(000001 O (11
(0100-10) & ( 2-1)
(0-1001 1) 7 (-1 2)

Left-handed SU3 “oots
(1000 1-1) 0 (0 0)
(<-11001-1) Y] (0 0)

(-210000) 12 (00n)

Right=-handed SU3 roots

(0-111-1-1) 9 (0 0}
(00-12-10) 10 (00)
( 0-1 2-1 0-1) 10 (0 0)

SU5 a ° iepto-diquarks

(1-11-110) 4 (01)
(101-10-1) 38 ( i-1)
(1-11-11-1) 15 (-1 0)
(0-11-101) 9 (01)
(001-1-10) 13 ( 1-1)
(0-11-100) 20 (-1 0)

SOIOISUS leptoquarks

(001 00=1) i (10)
(0=-1101-1 H (-1 1)
(00100-2) 12 (9-1)
(-1 01 0-10) 6 (1 0)
(-1-1 1 000) 11 -1 1)
(=1 01 0-1-1) 17 (¢ 0=-1)
(-1 001 00) i (01)
(-1 10 1-1=-1) H ( 1-1)
(-1 00 10=-1) 15 (-1 0)
thsnln
CO10-110) 3 (10

(O00-120 10 (-1 1)
CO10=11-1) 14 { 0=1)

leptoquarks

Q

o

4/3
4/3
4/3
1/3
1/3
1/7%

2/1
2/3
2/3
-1/3
-1/3
=1/
=2/1
-2/
-2/

2/
2/3
2/

1/2

1/2

1/2
"1/2
-1/
-1/2

1/2
1/2
1/2
-1/2
-1/2
-|/2

0

0

0

1/?
1/?
1/2

Q

0

0
0
0
0
0
0
0
0
0

SU5(801

24,(45)
24 (45)
24 (45)

24(45)
5(16)
5(16)

1(16)
10(1%)
16(45)

24 (45)
24 (45)
24 (45)
24 (45)
24(.,5)
24 (45)

10(45)
10(45)
10(45)
10(45)
10(45)
10445)
10(45)
10(4%)
10(ah)

1016}
J1OCI0)
10(16)

(ont Ined next

0

3c
3¢

at+h=2c¢
-a+2b-c

2a=-bh=-¢

a=bh=¢
a=h=-¢
a=h=-c
n=h=-c¢
n=h=-¢

a=h=-¢

i
h+¢
bt

h+¢

=h+2¢
=htle

=h42¢

pPagRe)

qt
R

3dE 2
3d £ ]

=d+2c T2
=2d+e T 1
d+e ¥ 1

0
0
31
3l
71

d+o
d+o
d+¢
d+¢ 3|
dto vl
dte gz |
d+e
dho
d+o

P OETOR B
2d=-0va )

2d=c 2.2



Table 1.

10-1
0 0-1
10-1
0 1-1
11-1
01-1
1-1 0
2-1 0
1-1 0

01)
11)
0 0)
10)
0-1)
1-1)
11)
0 0)
1m

(continued)
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19

16

10
17

(10
(-1 1)
( 0-1)
(01)
(1-1)
(-1 0)
(01)
(1-1)
(-1 0)

-1/3
-1/3
-1/3
1/3
1/3
1/3
-2/3
-2/3
-2/3

-1/2
-1/2
-1/2

o o O © O

10(16)
10(16)
10(16)
5(16)
5(16)
5(16)
10(16)
10(16)
10(16)

-b+2¢
-b+2¢
~b+2c
a~-b+2c
a~b+2c
a-bt2c
-at+3c
-a+3c

-a+3c

2d-e 2zl
2d--21
2d-. =1
3dz1
3d 21
3dt1
2d-c =2
2d-e 22
2d=-c¢ t 2



Table 2. Welghts and Content of the 27 of E

6 -

weight level color Qem 13w Qt SUS(SOIO) SO10 weight
(0001 0-1) 4 ( 00) 0 1/2 1 5(16) (1-1 01 0)
(-1 00 1-1 0) 9 (00) -1 -1/2 1 5(16) (100 0-1)
( 1-1 1-1 0 0) 9 (00) 1 0 1 10(16) (-1 0 1-1 0)
(10-1001) 10 (00) 0 0 1 1(16) (-1 1-1 0 1)
(00 1-1 1-1) 5 ( 00) 1 1/2 -2 5(10) (0-1100)
(-1 0 1-1 0 0) 10 (0 0) 0 -1/2 =2 5(10) ( 00 1-1-1)
(01-1010) 6 (co 0 1/2 -2 5(10) (00-111)
(-1 1-1 00 1) 11 (00) -1 =1/2 =2 5(10) (01-100)
(1-1 0 1-1 0) 8 (00) 0 0 4 1(1) (000 90)
(1000 00) 0 (10 2/3  1/2 1 10(16) (00001)
(1-1 00 1 0) 7 (-11) 2/3  1/2 1 10(%6) (-1 001 0)
(1000 0-1) 11 ( 0-1) 2/3  1/2 1 10(16) (0-10C1)
(000 0-11) 5 (10 =-1/3 =-1/2 1 10(16) (01 0-10)
(0-10001) 12 (-11) =-1/3 -1/2 1 10(16) (<1 1 0 0-1)
(000 0~10) 16 (0-1) =-1/3 -1/2 1. 10(16) (0C 0-10)
(-110000) 1 (10 -1/3 0 -2 5(10) (10000)
(-1 0001 0) 8 (-11) -1/3 0 -2 5(10) (000 1-1)
(-1 100 0-1) 12 (0-1) =-1/3 0 -2 5(10) (11 0 00)
(000-111) 4 (01) 1/3 0 -2 5(10) (<1100 0)
(01 0-100) 8 (1-1) 1/3 0 -2 5(10) (000-11)
(000-110) 15 (-1 0) 1/3 0 -2 5(10) (<1000 0)
(0-11000) 2 (01) 1/3 0 1 5(16) (001 0-1)
(001 0-1-1) 6 ( 1-1) 1/3 0 1 5(16) ( 1-1 1-1 0)
(0-110 0-1) 13 (-1 0) 1/3 0 1 5(16) ( 0-1 1 0-1)
(00-1101) 3 (01) =2/3 0 1 10(16) (01-11 0)
(01-11-1 0) 7 (1-1) =2/3 0 1 1C(16) (10-101)
(00-1100) 14 (-1 0 -2/3 0 1 10(16) (00-110)



Table 3. Physical Roots and Axes in E, Weight Space.

6

Dynkin Basis Dual Basis
(00000 1) [12321 2]
Color Roots (010 0-10) [122101]
(0-10011) [001111]
Weak Isospin Root (1000 1-1) [111110]
Q®™ axis 3(3-2 3-3 2-2) f212010
1, axis %(10001—1) %[111110]
Y axis -}’-( 3-4 6-6 1-1) 30 1-1 1-3-1 0]
QY axis 3¢ 1-1 0 1-1 0) [ 1-1 0 1-1 0]
QF  axis (-3-1 4 1-1-4) [-1 14 31 0]

B axis (-3c, 3c-a, 2a-b-c, 2b-a-c, 2c-b, =-a)

[-e ¢ a b ¢ 0]

L axils (-3d¥1,2d-e ¥2,d+e ¥1,¢-2d F1,2d-e & 2,d+e)
[-d, d21, d+e, ¢, ¢ 21, O]



